bayes

问题的提出 1

class

如果想判断未知样本的类别,即,已知它的三个属性X1、X2、X3,判断它是属于第一类(C=1)还是第二类(C=2)。

  • $P(C=1|X1,X2,X3)>P(C=2|X1,X2,X3)$,给定数据的X1、X2、X3后,数据属于类别1的概率要大于属于类别2,即说明现有样本支持未知样本属于类别1,判定为类别1。
  • $P(C=1|X1,X2,X3)<P(C=2|X1,X2,X3)$,则说明现有样本支持未知样本属于类别2,判定为类别2。

如何得到$P(C=1|X1,X2,X3)$和$P(C=2|X1,X2,X3)$这两个概率呢?答案是得不到。但是没关系,因为,只要知道这两个谁大谁小就可以进行判断:

  • $P(C=1|X1,X2,X3)>P(C=2|X1,X2,X3)$,则判定类别为1;
  • $P(C=1|X1,X2,X3)<P(C=2|X1,X2,X3)$,则判定类别为2;

贝叶斯定理就提供了方法进行这种比较。

贝叶斯定理

\[P(C|X) = \frac{ P(X|C)P(C)}{ P(X) }\]
  • P(C|X)是给定属性X下,C的后验概率
  • P(C)是C的先验概率

该公式被称为“贝叶斯定理”

根据贝叶斯定理,我们想找出最大的P(C|X),由于P(X)对所有类为常数,只要找出最大的P(X|C)P(C)即可,这便是朴素贝叶斯分类的基础。

朴素贝叶斯分类

朴素贝叶斯分类器采用了属性条件独立性假设:对已知类别,假设所有属性相互独立。2

\[P(C|X) = \frac{ P(X|C)P(C)}{ P(X) } = \frac{P(C)}{P(X)} \prod_{i = 1}^{d}P(X_i|C)\]

最小化分类错误率: $h^{*}(x) = arg max P(c|x)$

对所有类别来说P(X)相同,因此:

\[h_{naivebayes}^{*}(X) = arg max P(C) \prod_{i=1}^{d} P(X_i|C)\]

利用贝叶斯定理,找出最大的P(X|C)P(C)即可对未知样本进行分类,如max{P(X|C)P(C)}=P(X|C=n)P(C=n),则说明未知样本属于第n类,其中,

(1)P(C=i)=Si/S,Si是类Ci中的训练样本数,S是训练样本总数;

(2)P(X|C=i)的计算开销可能非常大,因为会涉及到很多属性变量,这里可以做“属性值互相条件独立”的假定,即属性间不存在依赖关系:


Naive Bayes


PlayTennis (i.e., decide whether our friend will play tennis or not in a given day) 3

#data
data = [
    {"outlook":"sunny", "temp":"hot", "humidity":"high", "wind":"weak", "class":"no" },
    {"outlook":"sunny", "temp":"hot", "humidity":"high", "wind":"strong", "class":"no" },
    {"outlook":"overcast", "temp":"hot", "humidity":"high", "wind":"weak", "class":"yes" },
    {"outlook":"rain", "temp":"mild", "humidity":"high", "wind":"weak", "class":"yes" },
    {"outlook":"rain", "temp":"cool", "humidity":"normal", "wind":"weak", "class":"yes" },
    {"outlook":"rain", "temp":"cool", "humidity":"normal", "wind":"strong", "class":"no" },
    {"outlook":"overcast", "temp":"cool", "humidity":"normal", "wind":"strong", "class":"yes" },
    {"outlook":"sunny", "temp":"mild", "humidity":"high", "wind":"weak", "class":"no" },
    {"outlook":"sunny", "temp":"cool", "humidity":"normal", "wind":"weak", "class":"yes" },
    {"outlook":"rain", "temp":"mild", "humidity":"normal", "wind":"weak", "class":"yes" },  
    {"outlook":"sunny", "temp":"mild", "humidity":"normal", "wind":"strong", "class":"yes" },
    {"outlook":"overcast", "temp":"mild", "humidity":"high", "wind":"strong", "class":"yes" },
    {"outlook":"overcast", "temp":"hot", "humidity":"normal", "wind":"weak", "class":"yes" },
    {"outlook":"rain", "temp":"mild", "humidity":"high", "wind":"strong", "class":"no" }]
import pandas as pd
pd.DataFrame(data)
class humidity outlook temp wind
0 no high sunny hot weak
1 no high sunny hot strong
2 yes high overcast hot weak
3 yes high rain mild weak
4 yes normal rain cool weak
5 no normal rain cool strong
6 yes normal overcast cool strong
7 no high sunny mild weak
8 yes normal sunny cool weak
9 yes normal rain mild weak
10 yes normal sunny mild strong
11 yes high overcast mild strong
12 yes normal overcast hot weak
13 no high rain mild strong
test={"outlook":"sunny","temp":"cool","humidity":"high","wind":"strong"}
#Calculate the Prob. of class:cls

def P(data,cls_val,cls_name="class"):
    count = 0.0     
    for e in data:
        if e[cls_name] == cls_val:
            count += 1
    return count/len(data)
# The probability of play or not
PY, PN = P(data,"yes"), P(data, "no")
PY, PN
(0.6428571428571429, 0.35714285714285715)
#Calculate the Prob(attr|cls)
def PT(data,cls_val,attr_name,attr_val,cls_name="class"):
    count1 = 0.0
    count2 = 0.0
    for e in data:
        if e[cls_name] == cls_val:
            count1 += 1
            if e[attr_name] == attr_val:
                count2 += 1
    return count2/count1
# The conditional probability of play or not
PT(data,"yes", "outlook", "sunny"), PT(data,"no", "outlook", "sunny")
(0.2222222222222222, 0.6)
#Calculate the NB
def NB(data,test,cls_y,cls_n):
    PY = P(data,cls_y)
    PN = P(data,cls_n)
    print 'The probability of play or not:', PY,'vs.', PN
    for key,val in test.items():
        PY *= PT(data,cls_y,key,val)
        PN *= PT(data,cls_n,key,val)
        print key, val, '-->play or not:-->', PY, PN
    return {cls_y:PY,cls_n:PN}
#calculate     
NB(data,test,"yes","no")
The probability of play or not: 0.642857142857 vs. 0.357142857143
outlook sunny -->play or not:--> 0.142857142857 0.214285714286
wind strong -->play or not:--> 0.047619047619 0.128571428571
temp cool -->play or not:--> 0.015873015873 0.0257142857143
humidity high -->play or not:--> 0.00529100529101 0.0205714285714





{'no': 0.020571428571428574, 'yes': 0.005291005291005291}
#calculate  
NB(data,{"outlook":"sunny","temp":"hot","humidity":"normal","wind":"weak"},"yes","no")
The probability of play or not: 0.642857142857 vs. 0.357142857143
outlook sunny -->play or not:--> 0.142857142857 0.214285714286
wind weak -->play or not:--> 0.0952380952381 0.0857142857143
temp hot -->play or not:--> 0.021164021164 0.0342857142857
humidity normal -->play or not:--> 0.0141093474427 0.00685714285714





{'no': 0.006857142857142858, 'yes': 0.014109347442680775}

Note

  1. 以下内容来自 【数说工作室】金融数据挖掘之朴素贝叶斯 http://www.ppvke.com/Blog/archives/6431 

  2. 周志华 2016 机器学习 p150-151 

  3. Mitchell Machine Learning http://www.cs.cmu.edu/~tom/10701_sp11/lectures.shtml 

Updated:

Leave a Comment

Show Comments